
OpenStudyBuilder Hub 
(OSB-Hub)

Innovating Through Community Collaboration
June 2nd 2025

OSB-Trail-SystemEngineering
Action Planning

Pascal Bouquet



➢ Introduction

➢ USDM Importer in OSB

➢ OSB Testing Strategies

Agenda



Mission and Vision:

Support the utilization and enhancement of the 

OpenStudyBuilder open-source tool.

Core Objectives: 

Collect feedback, run focused projects, drive 

innovation through community engagement.

Participants:

Everybody is invited!

OSB Hub



▪ COSA Community
▪ List, add and discuss use-cases

▪ Feedback & community interest

▪ Prioritise use-cases of interest

▪ Manage and run focus projects

▪ Utilization and enhancement of the OpenStudyBuilder

😊 Join us on Slack: Invite

💡 Feedback on Use-Cases: Discussions

📚 Checkout Information: Wiki

Purpose of OSB Hub

https://join.slack.com/t/osb-mdr/shared_invite/zt-2iwjqjg76-r0NW6pRH5GnGQQ~~izLc_A
https://github.com/cdisc-org/osb-hub/discussions/categories/use-cases
https://github.com/cdisc-org/osb-hub/wiki


OSB Trails – Focus Projects

OSB 
Trail



1. Optimizing deployment workflows for OSB across diverse environments. First deployment 
and deployment of new release
✓ Cloud: Azure, AWS, Google
✓ Containerization of OSB: EKS, AKS, GKE, OpenShift, Vmware Tanzu, Fargate, ACI …
✓ Develop a Terraform-based deployment template for easy replication across cloud 

environments (AWS, Azure, GCP).
2. Exploring and implementing robust authentication methods tailored to OSB.
3. Facilitating seamless integrations between OSB and other enterprise systems.
4. Monitoring of OSB/Observability
5. Inventory of OSB implementations
6. Archiving, Back-up, DR
7. Share Performances/Scalability Testing
8. Validation approach of OSB and Interest in developing UI testing tools 

to support validation.
9. Applying GraphRag on OSB
10. Changing OSB CSS 

OSB-Trail-System Engineering: SCOPE
P

ri
o

ri
ty

1
 S

co
p

e



OSB Strategic Roadmap and Vision 

OSB is advancing towards full end-to-end automation in clinical trials by integrating structured 
metadata across various processes:

PROTOCOL AUTHORING

Structured elements like the 
SoA are used to automatically 
populate Word-based protocol 
templates.

DATA COLLECTION ENABLEMENT

Facilitates the setup of 
Electronic Data Capture (EDC) 
systems through standardized 
metadata.

DATA TRANSFORMATION AND

ANALYSIS

Supports the generation of 
SDTM datasets and statistical 
analyses (ADaM/TFLs) by 
leveraging consistent 
metadata.

REGULATORY SUBMISSIONS

Enhances the preparation of 
clinical study reports and 
submissions by maintaining 
data integrity and traceability.

These efforts align with the CDISC 360i initiative, aiming to harmonize data standards and 
improve tool integrations throughout the clinical trial lifecycle..



Some OSB News
Migration of the OpenStudyBuilder project from GitLab to GitHub completed: Github code repo

Version 0,15 of OSB:

The OSB Word Add-In introduces a new ribbon in Word, allowing users to populate structured protocol content 
from OpenStudyBuilder into a standardized Word template

Release of Word Add-In

Users can now duplicate existing study structures to create new studies, promoting efficiency and consistency 
across related studies.

Copy Study Structure

The SoA interface now supports drag-and-drop functionality and is optimized for smaller screens, improving 
usability.

Enhanced SoA Interface

A guided setup (wizard) for creating Numerical Findings Activity Instances simplifies the configuration process.
Wizard for Activity 

Instances

A new dashboard allows users to compare different versions of a study, enhancing traceability and version 
control.

Audit Trail Enhancements

Users can specify vendor extensions when generating Case Report Forms (CRFs), allowing for tailored 
representations based on study requirements.

CRF Visualization Options

https://github.com/NovoNordisk-OpenSource/openstudybuilder-solution


➢ Introduction

➢ USDM Importer in OSB

➢ OSB Testing Strategies

Agenda



USDM for Dummies

USDM aims to establish a standardized, machine-readable model for representing the definition of a clinical study. 

It ensures interoperability and consistency across clinical trial tools and processes, particularly in support of 
initiatives like TransCelerate’s Digital Data Flow (DDF).

USDM facilitates reuse, supports regulatory compliance, and enhances collaboration between sponsors, CROs, and 
tech vendors.

The USDM Json model includes core study components such as study design, eligibility criteria, objectives, 
endpoints, arms, visits, activities, and data collection events.

USDM is owned and maintained by CDISC, developed in collaboration with stakeholders from the TransCelerate DDF 
initiative, technology vendors, and regulators.

Current release is USDM v3.0, published in November 2023, which aligns with ICH M11 specifications.

CDISC conducted a public review of the draft USDM v4.0, which closed on April 3, 2025.



USDM 3.0 

11
[1] DDF-RA/Deliverables/UML/USDM_UML.png at main · cdisc-org/DDF-RA · GitHub
[2] DDF-RA/Documents/Examples/EliLilly_NCT03421379_Diabetes/EliLilly_NCT03421379_Diabetes.json at main · cdisc-org/DDF-RA · GitHub
[3] DDF-RA/Documents/Examples/Alexion_NCT04573309_Wilsons/Alexion_NCT04573309_Wilsons.json at main · cdisc-org/DDF-RA · GitHub

https://github.com/cdisc-org/DDF-RA/blob/main/Deliverables/UML/USDM_UML.png
https://github.com/cdisc-org/DDF-RA/blob/main/Documents/Examples/EliLilly_NCT03421379_Diabetes/EliLilly_NCT03421379_Diabetes.json
https://github.com/cdisc-org/DDF-RA/blob/main/Documents/Examples/Alexion_NCT04573309_Wilsons/Alexion_NCT04573309_Wilsons.json


Value of a USDM Importer

OSB already supports USDM export—
an importer would close the loop, 

enabling bi-directional integration.

AI tools can generate USDM from 
protocols and extract controlled 
terms (e.g., SNOMED CT), making 
import into OSB seamless.

Importing historical USDM files 
helps train users and pre-populate OSB 
with legacy studies for demo and QA 
environments.

Facilitates automated transition from 
older study definition repositories into 
the OSB environment.

USDM’s machine-readble format 
reduces manual data entry, minimizes 
errors, and accelerates timelines 
across systems.

COMPLETES THE

BIDIRECTIONAL WORKFLOW

ACCELERATES AI-DRIVEN

STUDY SETUP

SUPPORTS LEGACY STUDY

INITIALIZATION

FAST-TRACKS MIGRATION

FROM LEGACY SDRS

IMPROVES EFFICIENCY AND

DATA QUALITY



USDM-OSB: Our experimentation

STUDY CREATION STUDY PATCH POSTS STUDY DESIGN

Steps:

1. The script builds a study payload and 

posts to `/studies`.

2. A study UID is returned for further 

processing.

01 02

Payload structure: Includes registry identifiers, 

version metadata, design details, and high-level 

metadata.

Steps:

1. Builds the metadata patch payload by 

mapping from the USDM JSON data.

2. Sends a PATCH request to 

`/studies/{study_uid}`.

This step creates the initial study shell 

under the project.

After creating the study shell, the script 

updates it with detailed metadata.

▪ Series of post calls to add /study-
objectives[primary,secondary], /study-
endpoints[primary,secondary],/study-criteria 
[inclusion,exclusion]

▪ OBJECTIVE,ENDPOINTS,CRITERIA-First, post request 
to create template-return template uid, use 
template uid at study level to post respective study 
component

▪ Adds study elements, epochs, and visits

▪ Visits require Epoch uid, so script posts epochs gets 
uid and loops through each epoch to post visits 
before moving to the next

03



USDM-OSB: Achievements and challenges
STUDY ACTIVITIES

[POST IN LIBRARY]

Steps:

1. If activity is present in returned json items , returns the activity groupings associated I,e activity_group_uid, 

activity_subgroup_uid and activity uid.

2. If activity has BC , checks it under the activity returned from /concepts/activities/activities and returns uid as in step [1]

3. If  the activity in USDM has a grouping i.e “see snip” 

• Then it loops through each childIDs items, searches front end for the activities, and returns their activity groupings,

• Else it creates a new activity group, and sub group and creates new activity under this subgroup, for now each 

activity is created with a suffix _”<study_number>” for traceability or for testing

4.    Else: If any activity is totally not in front end, script creates a new group and sub group for the activity under name“TBD” 

approves them in library then gets the associated activity_group_uid, activity_subgroup_uid and activity uid.

04

This step checks if activity in USDM is in this get request from front end /concepts/activities/activities

STUDY ACTIVITIES

[POST IN STUDY LEVEL]

05

Once we have activity_group_uid, 

activity_subgroup_uid and activity uid , we get 

the soa_group_term_uid, & 

activity_instance_uid and post the study 

activities

CHALLENGES
▪ SOA group terms are not in USDM

▪ Only activities with BC can be assigned instance class dynamically, instance can be determined based on 
class of domain found in properties section in USDM i.e LBCAT=Findings instance class 

▪ Hence created activities under TBD Group and sub group have no instance class and determining one is 
not dynamic yet

▪ UID mapping vs Content De-duplication. Calling “CriteriaTemplate_000981” returns metadata on 
retired/inactive version “CriteriaTemplate_000951”



Take Away and next steps

01 Importing Legacy Study in OSB has a lot of Value

02

03

04

USDM provides a useful framework for structuring study elements and importing in OSB

USDM Importer can take what is in USDM and load in OSB

A preliminary step is required to ensure good data quality in USDM: Data harmonization using multiple sources is 
essential to overcome the challenges of lack of standards terminology and concept in legacy trials

NEXT STEPS (WORKING BACKWARD)

Completing USDM import
Define an approach to data 

harmonization before USDM creation
02 01



➢ Introduction

➢ USDM Importer in OSB

➢ OSB Testing Strategies

Agenda



Version 0.14.2 Release (March 2025)
End-to-End Testing Suite: Introduction of a comprehensive testing framework with 93 test modules covering 
1,247 test cases ensures system robustness and reliability.

https://www.linkedin.com/pulse/openstudybuilder-27-beyond-concepts-events-release-0142-katja-glass-erxue/
https://www.linkedin.com/pulse/openstudybuilder-27-beyond-concepts-events-release-0142-katja-glass-erxue/


OSB testing process – high level overview

Our testing strategy can be summarized as „Test as early in the process as possible”. This shift-left testing 
approach allows us to detect most of the bugs right after they’re introduced. Thanks to that the bug-
fixing costs are lower.

Moreover, we are following the recommended test pyramid model. Looking at the number of tests we 
can clearly see that most of them are executed on integration/API level.

Complex E2E scenarios

E2E tests (UI & API)

Integration & API tests



OSB testing process – high level overview

The new functionality is 
tested by multiple 
developers' tests 

(integration layer)

The functionality is 
deployed to development 

environment

The functionality 
implementation is 

verified by the 
application specialist

The functionality UI 
design is verified by the 

UX specialist

The regression tests are 
run to detect any possible 

regression bugs



Test Levels – API & Integration tests - overview

These tests are ensuring that the integration between back-end modules is working as expected. 
They’re also verifying the API services behaviour.

▪ Responsible team: developers

▪ Run as part of the merge to the main branch (usually a few times a day)

▪ If any test fail - changes are rejected until fixes are provided

▪ If a bug is reported - proper tests are added or existing ones are updated to avoid regression in 
the future



Test Levels – API & Integration tests - statistics

▪ number of tests: 8,132

▪ average run time: 1h

▪ code coverage (lines): 94%

▪ code coverage (branches – possible code execution paths): 79%



Test Levels – E2E tests (UI layer) - overview

These tests are ensuring that the integration between back-end and front-end is working as expected. 

▪ responsible team: testers

▪ main goal is to simulate the end-user behaviour and to verify that the application is implemented in 
accordance with the user requirements

▪ complex E2E scenarios (~10% of full test scope) are executed manually by the application specialists

▪ atomic approach – we try to make our tests as independent as possible. Each test is focusing on 
specific functionality instead of verifying multiple ones. This gives us a clear overview of what is 
working and what is not.



Test Levels – E2E tests (UI layer) – execution 
frequency

▪ run on daily basis as part of the nightly build on development environment

▪ run locally by the test team members (a couple times a day, but usually not in the full scope)

▪ run on demand every time a release candidate is created and deployed to test environment



Test Levels – E2E tests (UI layer) - statistics

▪ number of tests: 1,048

▪ average run time: 3h

▪ functionalities coverage: ~70-80%

▪ flakiness: < 1%



Test Levels – E2E tests (UI layer) – tech stack

JavaScript

test code 
implementation

Cypress

testing framework

Allure

reporting

Cucumber tracking 
tests steps and their 

expected results



E2E Tests Process - development

Feature is 
refined and 

ready for the 
development

The gherkin 
specifications are 

created

Functionality is 
developed and then 
deployed to the DEV 

environment

Tests steps (based on 
gherkin specification) 

are implemented

New tests are now 
part of the scope

Feature is 
concluded and can 

be part of next 
release



E2E Tests Process - maintenance

Test results are 
monitored on 

daily basis

Bugs are 
reported if 

needed

Tests are updated if 
needed

If a bug was reported that 
wasn’t detected by tests – a test 

is added/updated to cover it

Existing tests are constantly 
reviewed and adjusted to newly 

added functionalities



E2E Tests Process - improvements

Test code is constantly 
improved to ensure low 

maintenance costs

If any test starts 
showing instability –
we’re immediately 

investigating it

We’re migrating tests 
pre-conditions to the 
API calls to speed-up 

the execution and 
ensure transparent 

results



E2E Tests – let’s dive into the technicalities

Code structure

1. Feature files – this is the place where all user requirements are described in the human readable 
language. They’re written in Gherkin and are following Given-When-Then pattern. Their naming is 
reflecting the actual application structure.

2. Steps definition files – here you can find our tests code. It’s written using Cypress and JavaScript. 
Similarly to the feature files the naming pattern is reflecting the application structure (POM).

3. Support functions (front-end commands) - many components are reused across the application 
(e.g. tables, dropdowns, search). In such cases we are preparing separate files to store generic 
functions. This way we’re avoiding code repetition, which in turn lowers maintenance costs.



E2E Tests – let’s dive into the technicalities

Code structure

4. Support functions (API requests) – to avoid hardcoding values (which may vary depending on 
used environment) we are often fetching it via API request. Additionally, we are using API 
requests to inject our custom test data.

5. Support functions (browser operations) – the functions that are stored here are helping is 
selecting specific study by its id.

6. Fixtures – the files stored here are holding the test data that is used for creating new objects in 
the application



E2E Tests – let’s dive into the technicalities

Test data for our tests is created via:

1. Import scripts – data is injected directly into the database. It must be run before tests start.

2. API requests – data is created via API POST calls. This is performed as part of the test.

3. Performing actions directly in UI –we are avoiding this approach if we can, since it slowing down 
the execution and can produce false-negative results. It’s performed as part of the test.



E2E Tests – let’s dive into the technicalities

Running tests can be done by:

▪ powershell commands – this way tests can be run both in foreground and background. User can 
execute specific test suite (feature file) or run whole tests scope.

▪ Cypress desktop tool – user can select which test suite to run. The tests can only be run in the 
foreground mode. If the used machine has poor RAM the tests might unexpectedly crash.



E2E Tests – let’s dive into the technicalities

Report is generated using Allure

▪ Test results are grouped by the feature files (suits) – it’s easy to map failing test to the specific page 
in the application

▪ Functionalities keywords – to improve readability we are specifying functionality keywords (e.g. 
create, edit, delete) at the beginning of test name. It also improves tests sorting in the report.

▪ Screenshot on fail – if something goes wrong and test fails a screenshot is taken to help in the 
investigation process



E2E Tests – What’s next?

Continue to improve 
tests coverage

Our aim is to reach 90% 
coverage functionality 

wise

Always keep the 
flakiness level below 

2%

If we want to have 
reliable tests, they must 

be stable

Extend traceability in 
Allure Report

We want to include 
data on execution 

history (pass-fail rate), 
functionality coverage, 

bugs etc.



THANK YOU!

OSB Hub



We need YOUR 
Feedback!

https://github.com/cdisc-org/osb-hub/wiki

https://github.com/cdisc-org/osb-hub/wiki

