
 

📋 Meeting Report – OSB Hub System 
Engineering 
Date: April 28, 2025 
Time: 14:02 CET 
Duration: ~1 hour 
Participants: Pascal Bouquet, Marius Conjeaud, Gerard Castillo, Kim Zachariassen, Imad 
Bousaid, Katja Glass, Josef Hartmann, Muharrem Daja, and others 

 

1. Introduction and Objectives (Pascal Bouquet) 
• This is the fourth meeting in the OSB System Engineering trail, under the OSB Hub 

community. 
• OSB Hub aims to foster community contributions, feedback, and guideline 

development. 
• The session's agenda: 

1. Data loading steps for OSB (by Marius Conjeaud) 
2. Migration strategy 
3. Deployment approach using Helm charts (by Boehringer Ingelheim) 

 

2. Initial Data Loading in OSB (Marius Conjeaud) 

🔹 Key Concepts 

• OSB deployments require pre-loaded data: standards, sponsor libraries, optional 
legacy protocols. 

• Two major data lifecycles: 
o Initial Loading: Controlled, file-based or scripted. 
o Live Input: User-generated via front-end/API (non-scriptable). 

🔹 Initial Loading Phases 

1. MDR DB (FHM-drtb) – Initializes the Neo4j graph DB: 
o Creates schema (indexes, constraints) 
o Can start from backup 
o Adds utility nodes 
o Adds NeoDash dashboards for data exploration 

2. MDR Standards Import: 
o Loads CDISC standards: control terminology, data models, IGs 
o Requires your CDISC API Key 



o Two-step process: staging → final import 
o Incremental: does not re-import already existing packages 
o Note: CDSIC standard import is being re-engineered 

3. Study Builder Import: 
o Loads sponsor library data (activities, criteria, units, models) 
o Requires the API to be live 
o Reads CSVs → makes API calls to populate the DB 
o Incremental logic avoids duplicate entries 
o Allows for loading mock studies for performance testing 

 

3. Data Migration Strategy 

🔹 Motivation 

• Live data cannot be re-imported from scratch 
• New OSB releases (e.g., changes in control terminology structure) necessitate schema 

changes 

🔹 Migration Mechanism 

• Implemented via migration scripts (in Cypher or Python) 
• Located in the migrations folder 
• Each script has a README explaining: 

o Scope of the migration 
o Steps performed (e.g., renaming properties, schema tweaks) 
o Data correction examples (e.g., converting usernames from initials to emails) 

🔹 Good Practices 

• Migrations are independant(safe to run multiple times) 
• No formal versioning yet for the data model — versions tracked manually 
• Users should test migrations on a data subset prior to production 
• Migration must match frontend/API version to avoid feature breaks 

🔹 Questions 

• Q: Can migrations be skipped? A: Yes, but only if you don’t upgrade front-end/API. 
Otherwise, features may break. 

 

4. OSB Deployment via Helm Charts (Gerard Castillo, 
Boehringer Ingelheim) 

🔹 Overview 



• Presentation from Boehringer Ingelheim to the community: Creation of Helm Charts 
to deploy OSB 

• In Boehringher, OSB is being deployed in OpenShift using Helm (industry standard 
for Kubernetes packaging) 

• Chart includes: 
o Neo4j (as a Helm dependency with minor overrides) 
o API, Consumer API, Frontend, Docs, NeoDash 
o Persistent volume configurations 

🔹 Customizations for OpenShift 

• Adapted Neo4j chart to support OpenShift’s security context (random UID at 
runtime) 

• Disabled hardcoded security contexts 
• Modified base images and Dockerfiles for OSB components (Python base → 

Bookworm preferred) 
• Configured resource constraints and single-threaded NGINX for performance and 

stability 

🔹 Job Handling (Kubernetes Jobs) 

• Repackaged initial loading and maintenance tasks (e.g., standards import) as 
Kubernetes jobs 

• Supports both manual and scheduled execution 
• Examples: automatic CT updates, regular backups 

🔹 Configuration 

• Central values.yaml file drives configuration 
• Supports environment-specific overrides 
• Handles external dependencies (e.g., Azure auth) via environment variables/secrets 

 

5. Q&A and Next Steps 

🔹 Questions Answered 

• Q: Are the Helm charts customizable? A: Fully configurable using values.yaml. 
• Q: How are external dependencies (e.g., Azure, secrets) handled? A: Through .env, 

config maps, and secrets injection mechanisms. 

🔹 Next Meeting 

• Date: June 2, 2025, at 4:00 PM CET 
• Proposed topics: Testing strategies, USDM ingestion in OSB 

 


